
Application of a Hybrid Variable Selection Method for
Determination of Carbohydrate Content in Soy Milk

Powder Using Visible and Near Infrared
Spectroscopy

XIAOJING CHEN*,†,‡
AND XINXIANG LEI

§

College of Physics and Electronic Information and Department of Chemistry, Wenzhou University,
Wenzhou 325027, China, and Department of Physics, Xiamen University, Xiamen, 361005, China

Visible and near-infrared (Vis-NIR) spectroscopy was investigated to fast determine the carbohydrate
content in soy milk powder. A hybrid variable selection method was proposed. In this method, a
simulate annealing (SA) algorithm was first operated to search the optimal band (OB) in the wavelet
packet transform (WPT) tree. The OB with 47 variables was further selected by SA (WTP-OB-SA).
Finally, the number of variables was reduced from 47 to 20. The best partial least-squares prediction
with a high residual predictive deviation (RPD) value of 12.2242 was obtained using these 20 variables
with the correlation coefficient (r) and root-mean-square error of prediction (RMSEP) being 0.9967
and 0.1669, respectively. The results indicated that Vis-NIR spectroscopy could efficiently determine
the carbohydrate content in soy milk powder. The WPT-OB-SA selection method eliminated redundant
variables and improved the prediction ability.
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INTRODUCTION

Soy milk (also called soya milk or soybean milk) is a
beverage made primarily from soy beans and milk. Soy milk is
produced by soaking dry soybeans and subsequently grinding
them with milk. Soy milk powder is a manufactured dairy
product made by evaporating soy milk to dryness. Carbohydrates
are one of the three main components of food that provide
energy and other factors to the body. Sugars, including fructose,
glucose, and lactose, are the main forms of carbohydrates.
Carbohydrates should be part of a healthy diet, but they can
also affect the plasma sugar level. Because carbohydrate
consumption is directly related to diabetes and other illnesses
such as obesity, the issue that will strongly dominate the health
food market is blood sugar management and healthy foods with
optimal carbohydrate contents (1). It has been estimated that
there were more than 30 million people in China with diabetes
in 2007. Thus, the rapid measurement of carbohydrate content
in soy milk powder is important for people’s health.

There are few reports that have evaluated the quality of soy
milk powder. Some research has applied chemical analysis or
sensory analysis techniques for evaluating the quality of milk
or milk powder. These techniques include Rose-Gottlieb,

Soxhlet extraction, Babcock, and Gerber methods (2), the
Kjeldahl method (3), high-performance liquid chromatography-
mass spectrometry (4), atomic absorption spectrometry (5), and
NMR spectroscopy (6). However, these methods are expensive
and labor intensive, result in sample destruction, and are not
suitable for the rapid carbohydrate content determination and
real-time monitoring during the production of soy milk powder.
Alternative fast procedures that preserve sample integrity and
reduce both financial and personnel costs are desirable, espe-
cially if the accuracy and precision of the techniques are
comparable to the traditional chemical methods.

Visible and near-infrared (Vis-NIR) spectroscopy has wide
applicability due to key features such as high speed, low cost,
and reliable detection for quantitative and qualitative analysis
(7). The NIR technique has been applied for evaluating the
quality and discrimination of milk powder (8-13). However,
few reports have reported on the quality evaluation of soy milk
powder using Vis-NIR spectroscopy. Vis-NIR spectra have
typical characteristics of wide broad, nonspecific, and overlap-
ping bands (14). The analysis of Vis-NIR spectra requires
optimization because of the wide wavelengths as input varia-
bles and the large number of samples. The selection of variables
would influence the quality of multivariate calibration models
(15). Some irrelevant variables may affect multivariate calibra-
tion, and the elimination of such variables can predigest
calibration modeling and improve prediction results in terms
of accuracy and robustness.
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We propose a hybrid variable selection method in combina-
tion of wavelet packet transform (WPT) with simulated anneal-
ing (SA). The objective of this study was to investigate the
feasibility of using Vis-NIR spectroscopy to predict the carbo-
hydrate content in soy milk powder. A partial least-squares
(PLS) model was established based on selected variables from
the optimal band (OB) in the WPT tree using an SA algorithm.
The performance of the proposed variable selection method was
compared with other PLS models using the following three
inputs: all spectral variables, selected variables from the whole
spectra using SA, or variables from the OB.

MATERIALS AND METHODS

Sample Preparation. Five popular brands of soy milk powder found
in China with different production times were purchased in several
local markets, including Beingmate (brand 1), Xiyangyang (brand 2),
Sanlu (brand 3), Weiwei (brand 4), and Sandun (brand 5). All of these
soy milk powder brands were frequently purchased by Chinese people.
The first three brands were standard soy milk powders found in markets,
whereas the remaining two brands were considered to be a health-
conscious soy milk powder for diabetics because the carbohydrate
content is lower.

Before the experiment, the soy milk powder samples were stored in
the laboratory at a constant temperature of 25 ( 1 °C for more than
48 h to ensure room temperature equalization. A total of 300 samples
(60 samples for each variety) were prepared for further treatments. Forty
samples were selected randomly from each variety, and a total of 200
soy milk powder samples were used in the calibration set for calibration
and validation, whereas the remaining 100 samples (20 for each variety)
were for the prediction set. No single sample was used at the same
time in the calibration and prediction sets. To compare the performance
of the different calibration models, the samples in the calibration and
prediction sets remained unchanged for all calibration models, and this
was set as a basic condition in this paper.

Spectral Collection and Reference Methods for Carbohydrate
Content. The Vis-NIR diffuse reflectance (375-1024 nm) spectra were
determined using a U-4100 spectrophotometer (Hitachi High Technolo-
gies, Inc., Tokyo, Japan). Before the calibration stage, the spectral data
should be preprocessed to ensure optimal performance. Standard normal
variate (SNV) (16) was applied for light scatter correction and reducing
the changes in the light path length.

The reference value of the carbohydrate content was measured by
an ABBebenchtop refractometer (model: WAY-2S, Shanghai Precision
& Scientific Instrument Co. Ltd., Shanghai, China). The refractive index
accuracy was (0.0002, and the Brix (%) range was 0-95% with
temperature correction. A 15 w/v % of samples was prepared in distilled
water, which required the dissolution of 15 g of soy milk powder in
100 mL of distilled water.

The statistic values of carbohydrate content in soy milk powder are
shown in Table 1. The difference between the maximum and the
minimum values was insignificant for the carbohydrate content in the
soy milk powder obtained from the same brand. The reason for this
observation was that soy milk powder was a mixed powder, and the
carbohydrate content was similar for samples obtained from the same
brand. Moreover, the samples in the calibration and prediction sets
were selected randomly. Therefore, the range and mean values of the

carbohydrate contents were similar in the calibration and prediction
sets. However, carbohydrate contents in the calibration and prediction
sets covered an adequate range, and this observation was valuable in
developing the models.

Wavelet Packet Transform (WTP). As an extension of wavelet
transform (WT) (17), WTP is a powerful signal processing technique.
It transforms the raw spectral data into different frequency bands, and
the frequency component in different bands has a different contribution
to the multivariate model (18). As such, finding the most useful band
that represents the most contribution to the model is an important issue.

In fast WT (19), a partial multiresolution analysis is performed. Only
the approximation coefficients (low-pass node) are employed to deduce
both scale and wavelet coefficients at the next resolution level. However,
WPT allows a full multiresolution analysis; both the approximation
and the detail coefficients (high-pass node) are involved to simulta-
neously decompose at the next resolution level (20). As a result, a library
of sub-band including low and high frequencies is obtained. A schematic
diagram for the WPT decomposition method is shown in Figure 1.

SA Algorithm. A SA algorithm, a simulation of an annealing process
used for metals, was proposed by Kerkpatrick et al. in 1983 (21).
Arguably, it offers the simplest and the most elegant solution with the
“best” record for solving combinatorial optimization problems. Unlike
other algorithms, the SA algorithm allows various types of transitions
in which some of them may oppose the goal (22). Hence, the SA
algorithm has been widely applied to many optimization problems, such
as multiobjective optimization of a constrained problem (23), the
maximum clique problem (24), and multiparameter of water optical
properties from above-water remote-sensing reflectance (25).

In the SA algorithm, a problem starts with an initial solution, and
this solution can be easily changed. Yet, as the temperature T, which
is the control parameter in the analogy with temperature in the physical
annealing processing, is decreased, changing configuration is increas-
ingly difficult. Finally, if T is lowered sufficiently, no further changes
in the solution space are possible. To avoid being frozen at a local
optimum, the SA algorithm moves slowly through the solution space.
This controlled improvement of the objective value is accomplished
by accepting nonimproving moves with a certain probability that
decreases as the algorithm progresses (23-25).

WPT-OB-SA Method. This method is a combination method of
WTP and SA and has two steps. In the first, the raw spectra were
decomposed by WTP, and all of the bands constituting the WPT tree
were obtained. The SA algorithm was first employed to search for the
OB in the WPT tree, which has the most contribution to calibration
model. Because of the effective searching ability of SA, all of the bands
were efficiently searched. In the second step, variables of the OB were
further selected by SA to obtain a more parsimonious and efficient
model. On the aspect of informative variables selection, the key
advantages of the WPT-OB-SA method are the number of variables to
the build PLS model is reduced without significantly compromising
the prediction ability of the model.

Determination of SA Algorithm Parameters. In this work, the
initial temperature TI, of the SA algorithm was 100 and the termination
temperature TS was 0. Student’s t distribution was employed to generate
a new solution in the SA algorithm. The random disturbance can be

Table 1. Carbohydrate Content Statistic Values of 300 Soy Milk Powder
Samples from Five Brands

data set no. of samples maximum minimum mean ( SDa

brand 1 60 5.822 4.882 5.432 ( 0.171
brand 2 60 10.489 10.300 10.397 ( 0.051
brand 3 60 10.292 9.813 10.023 ( 0.148
brand 4 60 11.398 10.905 11.127 ( 0.151
brand 5 60 8.618 7.901 8.313 ( 0.167
calibration set 200 11.372 4.882 9.061 ( 2.039
prediction set 100 11.398 5.121 9.052 ( 2.059

a Standard deviation.

Figure 1. Full WPT binary tree; each node is identified by the couple of
indices U (j,k), where j is the level of decomposition and k is the position
of the node at that level of decomposition.
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regarded as jumping the optimal model. The metropolis criterion uses
the change in function values between the current point and the new
point to determine whether the new point was acceptable or not. The
annealing schedule was an exponential annealing schedule, which
updated the current temperature based on the initial temperature and
the current annealing parameter k (the number of evaluations of the
objective function):

Tn+1 ) 0.95kTn (1)

In general, there are two stopping rules; the first one was that the
number of temperature transitions satisfies the temperature termination
rules, and the second rule was that the neighbor solution was not
improved after a certain period (26). In our strategy, the algorithm
stopped when the average change on the value of the fitness function
at the current point was less than 1 × 10-6 after 500 iterations.

EValuation of the Fitness Function. The performance of the SA was
evaluated through a fitness function, also known as an objective
function. The function value was the criterion for guiding SA to the
global optimum. The prediction ability of the calibration model was
evaluated with the parameters of correlation coefficient (r) and root-
mean-square error of cross-validation (RMSECV). The ideal model
should have a high r value and low RMSECV values (27). So, the
fitness function was defined as follows:

max f(X)) R
1+RMSECV
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where ci
o is the actual concentration of spectrum i in the calibration

set, cjo is the mean of ci
o, ci

p is the concentration predicted by the model,
cjp is the mean of ci

p, and n is the number of calibration sets. The fitness
function was measured in the form of leave-one-out cross-validation
using PLS. Different numbers of latent variables (LVs) were applied
to build the calibration models. The optimal number of LVs of PLS
was determined according to RMSECV. Thus, the model was built
using n - 1 training samples, and the one left out was used for
prediction.

RESULTS AND DISCUSSION

Absorbance Spectra of Soy Milk Powder and Statistical
Analysis of the Carbohydrate Content. Typical spectra of soy
milk powder samples are shown in Figure 2a. After SNV
pretreatment, most effects caused by the environment have been
eliminated. In Figure 2b, spectra from all five soy milk varieties
have similar gross absorbance patterns. There are some cross-
overs and overlaps among these samples. There is a strong
absorption in the violet region between 375 and 400 nm.
Absorbance values decrease as the wavelength increases, and
the spectral curves flatten. Although the spectra trends are
similar, some latent differences and features are present due to
the chemical components and color variance, which cannot be
distinguished visibly. Some obvious differences in the region
of 450-500 nm are observed following close inspection of the
spectra. These differences may have resulted from the color
variance caused by the different production stages and chemical
reactions (28). The production stages and chemical reactions
are related to the concentration of carbohydrate content.
Therefore, different varieties of soy milk powder with different
internal qualities such as sugars and organic acids are reflected
in the Vis-NIR spectra. However, it was not easy to visibly

observe differences. Chemometrics has been used for the further
analysis. Latent features of the spectra need to be mined for
the determination of the carbohydrate content in soy milk
powders.

PLS Models with the Whole Spectra Data. PLS models
were developed using the preprocessed spectra data by SNV.
The whole Vis-NIR spectra were used to establish the PLS
model. The predictive capability was evaluated by the following
indices: r, RMSECV, and root-mean-square error of prediction
(RMSEP). A good model should have a high r, low RMSECV,
and RMSEP. These standards should be taken into consideration
for distinguishing systematic errors and studying the correlation
between the carbohydrate content and the Vis-NIR models. No
outliers were detected in the calibration set during the develop-
ment of the PLS models. In the development on all PLS
calibration models, leave-one-out full cross-validation was used
to validate their quality. Different numbers of LVs were applied
to build the calibration models. The optimal number of LVs
for PLS was determined as nine when the REMSECV reached
a minimal value. Results of the calibration and prediction sets
are shown in Table 2. The r and RMSECV for the calibration
set were 0.9933 and 0.2617, and the r and RMSEP for prediction
set were 0.9940 and 0.2596.

PLS Models with Selected Spectra Data from Whole
Spectra. As aforementioned, whole Vis-NIR spectra as input
set of PLS model contained useless or irrelevant information
for the calibration model, for example, noise and background
signals. As an excellent search method, SA was employed to
seek the optimal wavelengths in the Vis-NIR region. In the SA
process, each wavelength variable had two logical values, 1 and
0; 1 represented the selection of the corresponding wavelength,
whereas 0 meant that the wavelength was not selected.

The selected wavelengths and the best function value are
shown in Figure 3. After SA selection, 309 wavelengths of total
650 wavelengths were selected to obtain the best fitness function
value of 0.8243. Spectra of selected wavelengths were applied
to build the PLS model. The optimal number of LVs for PLS
was determined as 10. Results of the calibration and prediction
sets are shown in Table 2. The r and RMSECV for calibration
set were 0.9957 and 0.2030, and the r and RMSEP for the
prediction set were 0.9951 and 0.2113. However, as the SA
was executed using all of the spectral variables in the Vis-NIR
region, the use of this large (i.e., hundreds) set of variables
resulted in the SA process being complex and time consuming.
Thus, we used WPT to first find the OB that represents the most
featured information. Here, it should be noted that the number
of variables as inputs of PLS model was changing during the
SA search running, but the optimal LVs remained unchanged
and was determined by the minimal RMSECV value of the
original variables. In the final calibration model, optimal LVs
were determined by minimal RMSECV value of selected
variables.

OB Searched by SA (WPT-SA). After all frequency bands
were obtained by WPT decomposition, SA was employed to
seek the OB in the WTP tree. Before SA was employed to search
for the OB, the search range of the SA approach should be
defined. The ranges include lower and upper bound constraints
of the decomposition level and the max node number in each
level. Lower and upper bound constraints of the WPT decom-
position level should be initially determined, upper bound,
namely, for a signal with a length of N, the theoretically
maximum decomposition level J, which was calculated by the
Matlab command “wmaxlev”; the lower bound of the decom-
position level was defined as zero, namely, the signal was not
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decomposed. Subsequently, the constraint range of node number
was determined according to the decomposition level, because
WTP decomposed the signal as the full binary tree (Figure 1).
The upper bound of the node number was set as 2l, where l
was the decomposition level. The low bound number of the
node was set to zero. In this work, the Db4 wavelet function

was employed, and all calculations were performed using
MATLAB 7.6 (the Mathwork, Natick, MA).

The optimal decomposition level, the node number, and the
best function value are shown in Figure 4. The optimal
decomposition level was determined as four, and the optimal
node index was (4, 0). The best fitness function value of 0.8337
was obtained by SA. The OB, which had 47 variables, was set
as the inputs of the PLS model. The optimal number of LVs
for PLS was determined as 11. Results of the calibration and
prediction sets are shown in Table 2. The r and RMSECV for
calibration set were 0.9967 and 0.1929, and the r and RMSEP
for the prediction set were 0.9959 and 0.1978. The prediction
results were found to be better than using optimal wavelengths
proposed by SA in the Vis-NIR region.

Further Variable Searching on OB Using SA (WPT-OB-
SA). In the OB, there were 47 variables; therefore, redun-
dancy was still present. SA was again employed to seek the
optimal variables in the OB. In the SA process, the 47
variables had two logical values, 1 and 0, which represented
selected or not selected, respectively. The selected wave-

Figure 2. Original absorbance spectra (a) and SNV pretreated absorbance spectra (b) of a total of 300 soy milk powder samples of five varieties at
Vis-NIR regions (375-1024 nm).

Table 2. Prediction Results of Carbohydrate Content of 100 Soy Milk
Powder Samples in Prediction Set Using Vis-NIR Spectra Based on
Different Variable Selection Methods

calibration prediction

variable
selection
method

no. of
selected
variables

no. of
LVs of
PLS rc RMSECV r RMSEP

none 650 9 0.9933 0.2617 0.9940 0.2596
WPT-SAa 47 11 0.9967 0.1929 0.9959 0.1978
SAb 309 10 0.9957 0.2030 0.9951 0.2113
WPT-OB-SA 20 11 0.9973 0.1668 0.9967 0.1669

a Optimal band of WPT. b Simulated annealing. c Correlation coefficient.
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lengths and the best function value are shown in Figure 5.
After SA selection, 20 variables out of the 47 variables in
the OB were selected to obtain the best fitness function value
of 0.8547. The retained variables were applied to build the
calibration PLS model (WPT-OB-SA-PLS). The optimal
number of LVs for PLS was determined as 11. The prediction
results of the calibration and prediction sets are shown in
Table 2. The r and RMSECV for the calibration set were
0.9973 and 0.1668, and the r and RMSEP for prediction set
were 0.9967 and 0.1669. Moreover, a high residual predictive
deviation value (RPD) of 12.2242 was obtained. The RPD
is the standard deviation of reference data for the validation
samples divided by the RMSECV (29). In general, RPD
values >8.0 are considered adequate for any application (29).
Thus, the ability of the model to predict carbohydrate content

in soy milk powder was significantly high. Figure 6 shows
the predicted vs reference charts for carbohydrate content of
samples in prediction set. The solid line represents the
regression line.

The results demonstrated that the best performance was
achieved with these 20 variables selected by WPT-OB-SA.
The r values for the calibration and prediction set were larger,
and the RMSEP and RESECV values were smaller than any
of the other models that were established based on the whole
650 spectral variables. These mined 20 variables obtained
the best predictive information on the carbohydrate content
prediction in soy milk powder. Furthermore, r for the
calibration and prediction sets and the RMSEP and RESECV
were very close. It indicated that the overfitting problem was
avoided, and a good stability and generalization were

Figure 3. Selection results of optimal wavelengths in the full Vis-NIR region proposed by SA. (a) Optimal wavelengths and (b) best fitness function
value. The white column represents the unselected wavelengths.

Figure 4. Result of optimal node by SA. (a) Optimal node index and (b) best fitness function value.

Figure 5. Selection results of optimal variables in the OB of WTP by SA. (a) Optimal variables and (b) best fitness function value. The white column
represents the unselected wavelengths.
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achieved by this new model. According to the results of the
calibration and prediction set, the 20 variables as feature
information could represent main diagnostic information, and
these variables could be applied instead of the whole original
spectra for predicting the carbohydrate content in soy milk
powder.

In conclusion, the determination of the carbohydrate
content in soy milk powder could be successfully performed
through Vis-NIR spectroscopy. A hybrid variable selection
method, WPT-OB-SA, was proposed. The overall results
indicated that Vis-NIR spectroscopy was an effective spec-
troscopic technique to determine the carbohydrate content
in soy milk powder based on PLS models. Taking into
account that the original 650 input variables were reduced
to 20 and that the accuracy and precision results were better
than the whole 650 spectral variables, the proposed hybrid
variable selection method, WPT-OB-SA, is a powerful tool
to compress the spectral data sets and select the optimal
predictive information. This hybrid selection model not only
reduced the number of analysis variables but also improved
the prediction ability. However, as the 20 variables still
represent a rather set for this application, further variable
selection on these 20 variables will be performed to find more
optimal variables.

ABBREVIATIONS USED

Vis-NIR, visible and near-infrared; SA, simulated anneal-
ing; OB, optimal band; WPT, wavelet packet transform; SNV,
standard normal variate; PLS, partial least-squares; LVs,
latent variables; NIR, near-infrared; RMSECV, root-mean-
square error of cross-validation; RMSEP, root-mean-square
error of prediction.
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